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Abstract

Surface parameterization is of great importance for many applications such as quadrangulation, texture mapping and surface fitting.
An important issue for surface parameterization is how to align parametric lines with feature directions. To address this issue, in
this paper we first utilize Loop subdivision basis functions and isogeometric analysis (IGA) to calculate eigenfunctions of the
secondary Laplace operator (SLO) on triangle meshes. Eigenfunctions are then used for centroidal Voronoi tessellation (CVT)
based surface segmentation, and boundaries of the segmented regions are extracted as feature lines which contain concave creases
and convex ridges. Along each feature line, adjacent triangles are defined as guidance triangles to parameterize the surface using a
constrained cross field method, where feature lines are preserved and aligned to parametric lines. Several examples are presented
in the end to verify the robustness of our algorithm.
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1. Introduction

Surface parameterization computes a one-to-one mapping between a 3D surface mesh and an isomorphic planar
patch. It has a variety of applications in different fields, including surface quadrangulation [1,2], texture mapping [3,4]
and surface fitting [5]. For parameterization-based quadrilateral (quad) meshing, vector field guided methods such as
mixed-integer quadrangulation [6], periodic global parametrization [2] and QuadCover [1] have been developed to
generate quality quad meshes. A typical vector field guided method usually consists of three main steps [7]: a cross
field is firstly constructed on the input surface which specifies the orientation and size of quad elements; the surface
is then partitioned by a set of curves to a topological disk and parametrized into an integer grid map; and finally, a
quad mesh can be extracted by tracing the integer parametric lines on the surface. These methods generate curvature-
oriented quad meshes by optimizing the cross field which is derived from the principal curvatures. Eigenfunctions of
the Laplace-Beltrami operator (LBO) were used in [8] as the guidance to capture major structure features during the
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cross field based global parameterization. Harmonic field based methods [9,10] construct conformal parameterizations
with singularities and offer a degree of control over the size and structure of the domain mesh.

Various discretization schemes of the LBO have been proposed on discretized surface meshes [11–13], such as
the cotangent scheme [14], Fujiwara’s discretization [15], and Mayer’s discretization [16]. A discretized LBO with
convergent property was recently constructed in [17]. Since eigenfunctions of the LBO are capable of capturing
structural features of an object, they have been intensively studied for surface matching and segmentation. The Shape-
DNA [18,19] employs level sets of the LBO eigenfunctions for statistical shape analysis. Point clustering [20,21] was
used together with the LBO eigenfunctions for surface segmentation. Interactive approaches were presented in [22] to
choose eigenfunctions and the Mumford-Shah model was then applied to segment the surface into several components.
To detect concavities, the concavity-aware Laplacian method [21] was developed and its eigenfunctions can be used
to generate a single segmentation field through the spectral clustering. However, it is hard for the LBO eigenfunctions
to detect curvature-related features since they are defined based on the first fundamental form of the surface [23].
Improving upon the LBO, the secondary Laplace operator (SLO) [24] was developed recently based on the second
fundamental form of the surface. Curvature related surface features, such as concave creases and convex ridges, can
be automatically captured by its eigenfunctions. Computation of the SLO eigenfunctions in [24] utilizes quadrilateral
control meshes with Catmull-Clark basis functions [25], which limits its application on triangle meshes.

Given an input triangular mesh, in this paper we first introduce a centroidal Voronoi tessellation (CVT) based
surface segmentation method using the SLO eigenfunctions to extract surface features, and then apply the cross field
method to generate a feature-aligned surface parameterization. The SLO eigenfunctions are computed using Loop
subdivision basis functions and isogeometric analysis. The first several modes are selected for CVT-based surface
segmentation, and boundaries of the segmented regions are extracted as feature lines which contain concave creases
and convex ridges. Along each feature line, adjacent triangles are defined as the guidance for cross field construction.
A constrained surface parameterization is then computed, where feature lines are preserved and aligned to parametric
lines. The key contributions of this paper include:

1. Loop subdivision basis functions are utilized together with isogeometric analysis (IGA) to solve the eigenproblem
of the SLO over triangular meshes, which is defined based on the second fundamental form of the surface;

2. A CVT-based surface segmentation approach is developed in the eigenfunction space, where the L∞ norm is
used as the distance measurement. Compared to the L2 norm distance measurement, the L∞ norm distance
metric is more robust to identify surface features by taking the dominant feature of the difference vector between
a vertex and its associated generator. By considering both the eigenfunction similarity and segmented boundary
smoothness, regions surrounded by curvature related features can be segmented while generators are iteratively
updated in the eigenfunction space; and

3. Boundaries of the segmented regions are used to define guidance triangles and their guidance directions. The
constrained cross field method parameterizes the surface with all feature lines aligned to the parametric lines.

The remainder of this paper is organized as follows. Section 2 talks about the SLO and its eigenfunction com-
putation using Loop subdivision based IGA method. Section 3 discusses CVT-based surface segmentation and cross
field-based parameterization. Section 4 shows some results, and Section 5 draws conclusions and points out future
work.

2. SLO Eigenfunction Computation Using Loop Subdivision Basis Functions

Given an input triangle mesh, we use Loop subdivision basis functions to define a smooth representation of the
surface. The SLO eigenfunctions are calculated using the subdivision-based IGA method.

2.1. Secondary Laplace Operator

Let S = {x(u, v), (u, v) ∈ R2} be a smooth and closed parametric surface, where (u, v) can also be written as (u1, u2)
for convenience. The coefficients of the first fundamental form of S are defined as gαβ = 〈xuα , xuβ〉 (α, β = 1, 2), where
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xuα = ∂x
∂uα and xuβ = ∂x

∂uβ . The coefficients of the second fundamental form of S are defined as bαβ = 〈n, xuαuβ〉, where
xuαuβ = ∂2x

∂uα∂uβ and n = (xu × xv)/ ‖xu × xv‖. Let g = det[gαβ], [gαβ] = [gαβ]−1, and [bαβ] = [bαβ]−1. Given f ∈ C2(S ),
the LBO [21,26] acting on f is defined as

4 f = div(∇ f ) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g
[
gαβ

] [
fu, fv

]T
]
, (1)

where ∇ is the tangential gradient operator given by

∇ f = [xu, xv]
[
gαβ

] [
fu, fv

]T , (2)

and div is the tangential divergence operator defined by

div(v) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g
[
gαβ

]
[xu, xv]T v

]
. (3)

Improving up the LBO which is defined based on the first fundamental form of the surface [23], the SLO N is
defined based on the second fundamental form of the surface [24]. It is given implicitly as∫

S

(hN f + 〈� f ,�h〉) dA = 0, ∀h ∈ C1(S ), (4)

where the generalized second tangential operator (GSTO) � can be defined as

� f = [xu, xv] Φ
[
bαβ

] [
fu, fv

]T
= g�u fu + g�v fv, (5)

with g�u = Φ
b (b22xu − b12xv) and g�v = Φ

b (b11xv − b12xu) . Different choices of the parameter Φ can be used for
various applications [24]. Let λL and λS be the eigenvalues of LBO and SLO respectively, the corresponding eigen-
functions fL and fS should satisfy

4 fL = −λL fL and N fS = −λS fS . (6)

Different from the widely employed LBO eigenfunctions, the SLO eigenfunctions can capture the curvature-related
surface features [24], which automatically distinguish different components of an object.

2.2. Eigenfunction Computation of SLO

Letting {ϕi}
N
i=1 be a set of basis functions defined on the surface, where N is the vertex number and ϕi ∈ C2(S ), f

can be approximately represented as f =
N∑

i=1
wiϕi. Plugging h = ϕ j ( j = 1, 2, · · · ,N) into Eq. (4), we obtain
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for the LBO and SLO, respectively. Letting mL
i j =

∫
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∇ϕi,∇ϕ j

〉
dA, mS

i j =
∫
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dA, and ci j =

∫
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ϕiϕ jdA, the

eigenfunctions of LBO and SLO can be obtained by solving the eigenproblems

MLW = λLCW and MS W = λS CW, (7)

where ML =
[
mL

i j

]
, MS =

[
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i j

]
, C =

[
ci j

]
, and W = [w1,w2, ...,wN]T .
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Since SLO is defined based on the second fundamental form of the surface, a high-order representation of the
surface is required to compute its eigenfunctions. Catmull-Clark basis functions and quadrilatral control meshes were
used in [24] to represent the surface, where surface quadrangulation is required as the preprocessing for input triangle
meshes. In this paper, we directly use triangle meshes with Loop subdivision basis functions to represent the surface,
and the eigenproblems of LBO and SLO can be solved using the Loop subdivision based IGA method [24,27]. Given
a triangle mesh K, the Loop subdivision scheme subdivides each triangle into four subtriangles in each subdivision
step, where vertices of the refined mesh are calculated as the weighted average of vertices of the unrefined mesh. Let
us consider the subdivision process from the k-th level to the (k +1)-th level, where k = 0, 1, · · · . The initial mesh K is
taken as the subdivision surface of the 0-th level. Let xk

0 be a vertex at level k with one-ring neighbors xk
i (i = 1, . . . , n),

where n is the valence of xk
0. Then the vertex position is updated by

xk+1
0 = (1 − nα)xk

0 + α(xk
1 + xk

2 + · · · + xk
n), (8)

where α = 1
n

[
5
8 − ( 3
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]
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3
8

xk
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3
8
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i +

1
8

xk
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1
8

xk
r . (9)

Note that all the newly generated vertices have a valence of 6, while vertices inherited from the original mesh may
have a valence other than 6. The vertex of valence 6 is referred to as a regular vertex, and the vertex of valence other
than 6 is referred to as an extraordinary vertex. The limit surface of the Loop subdivision is C2-continuous at regular
vertices and C1-continuous at extraordinary vertices [28].

To obtain a local parameterization of the limit surface for each triangle in the initial control mesh K, we choose
(u, v) as two barycentric coordinates in (1 − u − v, u, v) and define T̄ as

T̄ =
{
(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u + v ≤ 1

}
.

For a regular surface patch whose corresponding initial triangle has three regular vertices, it can be exactly described
by a quartic box-spline via twelve local control vertices and their basis functions. We have

x(u, v) =

12∑
i=1

Ni(u, v)xi, (10)

where the basis functions Ni are given in [28].
For an irregular surface patch whose corresponding initial triangle has one or more extraordinary vertices, the

mesh needs to be subdivided recursively until the parameter values of interest are interior to a regular patch according
to a fast evaluation strategy [28] under the assumption that any irregular patch has only one extraordinary vertex.
Each subdivision of an irregular patch produces three regular subpatches and one irregular subpatch. The piecewise
parametric subdomains T̄ k

j at the subdivision level k are given as follows:

T̄ k
1 =

{
(u, v) : u ∈

[
2−k, 2−k+1

]
, v ∈

[
0, 2−k+1 − u

]}
,

T̄ k
2 =
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]
, v ∈

[
2−k − u, 2−k

]}
,

T̄ k
3 =

{
(u, v) : u ∈

[
0, 2−k

]
, v ∈

[
2−k, 2−k+1 − u

]}
.

These subdomains can be mapped onto T̄ via the following transformations:

tk,1(u, v) = (2ku − 1, 2kv), (u, v) ∈ T̄ k
1 ,

tk,2(u, v) = (1 − 2ku, 1 − 2kv), (u, v) ∈ T̄ k
2 ,

tk,3(u, v) = (2ku, 2kv − 1), (u, v) ∈ T̄ k
3 .

The entire irregular patch is then defined by its restriction to each regular subpatch

x(u, v)
∣∣∣∣T̄ k

j
=

12∑
i=1

Ni(tk, j(u, v))xk, j
i , j = 1, 2, 3; k = 1, 2, · · · , (11)
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where xk, j
i are properly chosen from the control vertices around the irregular patch at the subdivision level k, and they

define a regular subpatch. Hence, the main task becomes how to compute these control vertices. A Jordan canonical
decomposition of the subdivision matrix [28] is used here to speed up the computation in the subdivision process.

For each vertex xi of a control mesh K, we can associate it with a basis function ϕi, where ϕi is defined by the
limit of Loop subdivision for zero values everywhere except at xi, where it is one. Note that the basis ϕi is different
from the basis Ni in Eq. (10). ϕi is a piecewise function whose support covers 2-ring neighboring triangles, whereas
Ni is defined on one triangle only [29]. Using the basis functions {ϕi}

N
i=1, the limit surface of Loop subdivision can be

expressed as S =
N∑

i=1
ϕi(xi)xi. To solve the eigenproblems of Eq. (7), we follow three main steps:

1. Precompute Loop subdivision basis functions and their first derivatives for each patch;
2. Evaluate matrice elements mi j and ci j over S using the 6-point Gauss-Legendre integral formula; and
3. Assemble matrice elements mi j and ci j into the eigenproblem system MW = λCW.

As mentioned above, (1 − u − v, u, v) are the barycentric coordinates of the generic triangle in the mesh K. Using
this parameterization, our discretized representation of K is K =

⋃
α Tα, T̊α ∩ T̊β = ∅ for α , β, where T̊α is the

interior of the triangular patch Tα. Each triangular patch is assumed to be parameterized locally as

xα : T̄ → Tα; (u, v) 7→ xα(u, v), (12)

where xα(u, v) is defined by Eqs. (10) and (11). Note that our parameterization has no overlap. Each point x ∈ K has
its unique parameter coordinates except at the boundary of each patch. With this parameterization, the matrix element
ci j can be computed as

ci j =

∫
S

ϕiϕ jdA =
∑
α

∫
Tα
ϕiϕ jdA =

∑
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gdudv,

and the matrix element mi j is replaced by
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gdudv

and
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i j =
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S

〈
�ϕi,�ϕ j

〉
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∑
α

∫
Tα

〈
�ϕi,�ϕ j

〉
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∑
α

∫∫
T̄

Φ2 [
ϕiu, ϕiv

] [
bαβ

] [
gαβ

] [
bαβ

] [
ϕ ju, ϕ jv

]T √
gdudv,

where ϕiu =
∂ϕi(xα(u,v))

∂u and ϕiv =
∂ϕi(xα(u,v))

∂v . The integration on the triangle T̄ is computed by subdividing the triangle
adaptively and then using the Gauss-Legendre quadrature.

We can then assemble ci j and mi j into the global matrices C and M, and solve the eigenproblems accordingly. Var-
ious eigenfunctions of LBO/SLO reflect surface features at different scales. Fig. 1 shows the first four eigenfunctions
of the Bunny and L-shape models, as well as the first five eigenfunctions of the Hook model. To detect both concave
creases and convex ridges of an object, we calculate SLO eigenfunctions with Φ = 1 for all the models in this paper.
We can observe that the LBO eigenfunctions follow the main structure of the surface smoothly, but it is insensitive to
the variation of surface curvatures. Compared to LBO, the SLO eigenfunctions can detect curvature related features
(e.g., the concave creases of the Bunny, and sharp features of the Hook and L-shape) because it is defined based on
the second fundamental form of the surface [24].

3. Surface Parameterization with Feature Preservation

After eigenfunction computation, in this section we first apply CVT based surface segmentation to extract feature
lines, and then utilize the cross field method to generate a feature-aligned surface parameterization.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. The first four or five eigenmodes of the LBO (a, c, e) and SLO (b, d, f) for the Bunny (a, b), Hook (c, d) and L-shape (e, f) models.

3.1. Feature Extraction via Surface Segmentation

We begin this section by reviewing CVT-based clustering techniques. The CVT scheme has been introduced
to various fields and applications, including both image and mesh processing [30–32], which generates an optimal
domain partition corresponding to an optimal distribution of generators. Given an input point cloud and L generators,
each point is firstly assigned to its nearest generator with certain distance metric to construct L non-overlapping
Voronoi regions. The centroid of each Voronoi region can be computed by minimizing an energy function E which
measures the clustering similarity. Each generator is iteratively updated to be the centroid of its associated Voronoi
region, where a new partition can be computed. Such an algorithm aims at minimizing the energy function E until each
centroid coincides with the corresponding generator. The edge-weighted CVT (EWCVT) model [31,33] can segment
images with noise by combining the image intensity information together with the length of cluster boundaries in
the edge-weighted clustering energy function. As a follow up, the harmonic EWCVT (HEWCVT) [34] outperforms
the classic CVT methods [30,31] by introducing a harmonic form of clustering energy functional to generate stable
image segmentation results. Several methods have been proposed to compute the CVT on curved surfaces [35–38].
The CVT energy function from the Euclidean space was further extended to the spherical and hyperbolic spaces in
[39], called the universal covering spaces of surfaces. A GPU-based method was proposed in [40] for computing the
CVT on the planar domain, leading to a significant speedup over CPU-based methods. CVT-based surface remeshing
algorithms [41,42] compute restricted Voronoi diagrams defined as the intersection between the input mesh and a
Voronoi diagram. The CVT method [43] can also be used for line segments and graphs. The harmonic boundary-
enhanced CVT (HBECVT) [44] extends the HEWCVT-based image segmentation to mesh segmentation in the normal
space for automatic polycube construction. In this section, we further extend the HBECVT-based clustering idea to
the SLO eigenfunction space for surface segmentation of triangle meshes.
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We can map vertices onto a p-dimensional space by selecting p eigenmodes of the SLO. Let Ψ = {ψi}
nν
i=1 denote

p-dimensional eigenfunctions for all vertices of the surface mesh with ψi =
(
φi1, . . . , φip

)
, where nν is the total number

of vertices, ψi represents the assigned p-dimensional vector of the ith vertex xi, and φi j = f j(xi), j = 1, 2, · · · , p,
f j =

∑
k wkϕk is the jth eigenfunction of the SLO. Let C = {cl}

L
l=1 denote a set of predefined p-dimensional vectors,

which can be initialized by choosing L random vertices, and we take their p-dimensional eigenfunction vectors. The
Voronoi regions V = {Vl}

L
l=1 in Ψ can be obtained by assigning each vertex to the cluster with the closest generator

according to the distance metric:

Vk = {ψi ∈ Ψ : dist (ψi, ck) ≤ dist (ψi, cl) , for l = 1, . . . , L} , (13)

where dist (ψi, ck) measures the distance between ψi and ck. To measure the distance between vector ψi and generator
ck in the p-dimensional eigenspace, we define the L∞ norm based distance metric as

dist (ψi, ck) =

√
‖ψi − ck‖

2
∞ + λñk(xi), (14)

where the term ‖ψi − ck‖∞ = max
{
|φi1 − ck1|, |φi2 − ck2|, . . . ,

∣∣∣φip − ckp

∣∣∣} measures the distance in the p-dimensional
eigenspace, the boundary-enhanced term ñk(xi) represents the number of vertices that do not belong to the kth cluster
within the ω-ring (ω = 3 in this paper) neighborhood of xi and λ is a positive weighting factor to balance these
two terms. Note that ñk(xi) includes the local neighbouring information of vertex xi. Given any set of generators
C = {cl}

L
l=1 and any partition U = {Ul}

L
l=1 of Ψ, the L∞ norm clustering energy function of (C; U) can be defined as

E (C; U) =

n∑
i=1

L
/ L∑

l=1

dist−2 (ψi, cl)

. (15)

The CVT construction can be viewed as an energy minimization process, where the centroid c∗k of each cluster
Vk is calculated by minimizing the clustering energy in Eq. (15) with respect to ck. Since there is no derivative
available by using the L∞ norm, we use the Powell method [45] to numerically calculate c∗k for each cluster. If the
generators of the Voronoi regions {Vl}

L
l=1 coincide to their corresponding centroids, i.e., cl = c∗l for l = 1, . . . , L, then

we call such Voronoi tessellation {Vl}
L
l=1 a CVT. Otherwise, we set cl = c∗l for l = 1, . . . , L to start a new iteration by

Eq. (13). In our implementation, {cl
∗}Ll=1 and {cl}

L
l=1 are updated iteratively until the energy variation is less than a

predefined threshold. Based on the L non-overlapping clusters of surface vertices, we then construct the boundaries
of each cluster to obtain the final surface segmentation. Fig. 2(b) shows the CVT-based surface segmentation result
of the Hollow-cylinder model with four clusters by using the first three SLO eigenmodes (shown in Fig. 2(a)), where
neighbouring clusters are rendered with different colors. From the segmentation result, we can observe that regions
surrounded by concave creases and convex ridges are well segmented since SLO eigenfunctions are sensitive to the
variation of surface curvatures. Based on the segmentation results, boundaries of each cluster are extracted as the
feature lines, which will be preserved during the following surface parameterization process.

3.2. Surface Parameterization

Using feature lines extracted from surface segmentation, we now build a constrained surface parameterization via
the cross field method, where we aim to align feature lines to parametric directions. Along each feature line, we find
its adjacent triangles and define them as the guidance triangles. For each guidance triangle, we can calculate its four
perpendicular guidance directions by using the edge direction and normal vector. Note that the guidance triangles are
used as the constraints to provide guidance for the cross field construction. For the Hollow-cylinder model in Fig. 2,
the feature lines are extracted via boundary extraction and marked as green lines in Fig. 2(c). For each blue guidance
triangle, we calculate its guidance directions through the direction of the feature edge and the normal vector, see the
result in the red window of Fig. 2(c).

For the given triangle mesh K, the cross field of each triangle i is represented by an angle θi. Using the guidance
triangles with guidance directions defined by feature lines, a cross field can be obtained by minimizing a smoothness
energy function [6]
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(a) (b) (c)

(d) (e)

Fig. 2. Hollow-cylinder model. (a) Modes 1-3 of the SLO; (b) CVT-based surface segmentation; (c) feature lines (green), guidance triangles (blue)
and their guidance directions; (d) the built smooth cross field (four arrows in each triangle); and (e) surface parmaterization with parametric lines.

Γ0 =
∑
ei j∈ε

(θi + κi j +
π

2
pi j − θ j)

2
, (16)

where ε contains all edges, ei j is the edge shared by triangle i and j, κi j is the angle between reference edges ei

and e j, and pi j represents the integer period jump cross the edge ei j. The mixed-integer solver [6] is used to solve
the minimization problem. Fig. 2(d) shows the calculated cross field of the Hollow-cylinder. Four arrows for each
triangle represent the four directions of the cross field that are perpendicular or parallel with each other. The surface is
then partitioned into a disk-like planar region, where all the singularities are positioned on the boundary of the planar
region. The surface parameterization is computed as a solution to the constrained minimization problem [6]
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∑
Ti∈M

Ai(‖∇u − βui‖
2 + ‖∇v − βvi‖

2)→ min, (17)

where β is used to control the spacing of the parametric lines (in this paper we choose β = 0.2), Ai is the area of
triangle i, ui and vi are two directions chosen from the four directions of the cross field in triangle i, and (u, v) are
the parametric coordinates. The constraints imposed on (u, v) values correspond to transitions across seams: we want
the match across seams to be the same as for the guiding cross field. Apart from transition constraints, constraints
are imposed on vertices of each feature line. For two vertices of each sharp edge, we compare the edge direction
with ui and vi and set constraints to ensure that these two vertices have the same u or v coordinates. For vertices
along the feature lines, we also set integer constraints according to the (u, v) coordinates of the corresponding feature
edges so that the generated parametric lines will align with the feature edges exactly. In addition, all singularities are
constrained to be at integer locations in the parametric domain, which ensures all singularities are at quad corners
and all quad edges are matched across disk-like planar regions. The quadrangulation can be generated by tracing the
integer parametric lines on the surface. Fig. 2(e) shows the surface parameterization result of the Hollow-cylinder
with parametric lines (marked as blue lines), which align to the feature lines detected by surface segmentation.

Remark 3.1. Various eigenfunctions of the SLO can capture different curvature related surface features. When
we use multiple eigenmodes of the SLO for the surface segmentation, the L∞ norm distance metric computes the
distance from a vertex to a generator by taking the dominant feature of the difference vector in the p-dimensional
eigenfunction space. By considering both the eigenfunction similarity and segmentation boundary smoothness in
the boundary-enhanced distance metric, our CVT-based surface segmentation can extract curvature related surface
features with smooth boundaries. Our surface parameterization generates feature-aligned quadrangulation results by
applying two constraints. Firstly, the pre-defined directions in guidance triangles follow feature lines and they are
used as constraints for the cross field construction in Eq. (16). Secondly, integer constraints are applied to vertices
along the feature lines during the minimization process in Eq. (17), yielding feature-aligned surface parameterization.

4. Results and Discussion

We have applied the presented algorithms to several datasets, including the Bunny (Fig. 3), Teddy (Fig. 4), Hook
(Fig. 5) and L-shape (Fig. 6). For each model, we calculated SLO eigenfunctions, CVT-based surface segmentation
and surface parameterization with feature preservation. All results were computed on a PC equipped with a 2.93 GHz
Intel X3470 CPU and 8GB of Memory. Statistics of all tested models are given in Table 1, where we show a summary
of the number of singularities and the computational time for each model. For CVT-based surface segmentation,
we need to select SLO eigenfunctions and define two parameters: L, the number of clusters; and λ, the weighting
parameter that balances the clustering energy and the boundary-enhanced energy.

Fig. 3 shows the surface segmentation and parameterization results of the Bunny model. We segment the surface
into 5 clusters by using the first eigenfunction of the SLO. As shown in Fig. 3(a), it is obvious that our CVT-based
method segments the concave and convex regions well since the SLO eigenfunctions are sensitive to curvature-related
surface features. Based on the segmentation result, we extract boundaries of each cluster as the feature lines and
define the corresponding guidance triangles with their guidance directions for the cross field construction. Compared
to the unconstrained surface parameterization, our constrained parameterization aligns the resulting parametric lines
to the feature lines, see the comparison in the red windows of Fig. 3(b, c). Fig. 4 shows the results of the Teddy
model, where Modes 1-4 of the SLO are used to segment it into 6 clusters. Since multiple eigenmodes are used,
here we generate CVT-based segmentation results using the L2 and L∞ norm distance metrics respectively under the
same initialization; see Fig. 4(b, c). We can observe that the segmentation using the L∞ norm distance measurement
segments surface features better, where the head and legs are well separated from the body. Fig. 4(d) shows the final
feature-aligned surface parameterization result.

We also applied our algorithms to several CAD models with sharp features. Figs. 5 and 6 show results of the Hook
and L-shape models. For the Hook model, we segment the surface into 6 clusters by using Modes 1-5 of the SLO. Fig.
5(a) and (b) show the CVT-based segmentation results using the L2 and L∞ norm distance metrics respectively in the
5-dimensional eigenspace under the same initialization. For the L-shape model, we segment the surface into 6 clusters
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Table 1. Statistics of all the tested models.

Model Modes λ
Number of Number of TE TS TP TT

(vertices, elements) clusters singularities (s) (s) (s) (s)
Hollow-cylinder

(927, 1,854) 1-3 0.02 4 0 6.7 1.4 5.6 13.7

Bunny
(14,076, 28,148) 1 0.01 5 42 93.6 18.8 76.7 189.1

Teddy
(6,104, 12,204) 1-4 0.01 6 34 41.1 8.3 33.6 83.0

Hook
(2,256, 5,128) 1-5 0.02 6 16 15.5 3.2 12.9 31.6

L-shape
(538, 1,072) 1-4 0.02 6 12 4.5 0.9 3.7 9.1

Note: (vertices, elements) - the number of vertices and triangles in the input mesh; TE - time for eigenfunction computation; TS -
computational time for CVT-based surface segmentation; TP - computational time for surface parameterization; and TT - the total
computational time. (Time unit: second).

(a) (b) (c)

Fig. 3. Bunny model. (a) Surface segmentation result from the first eigenfunction of the SLO; (b) unconstrained surface parameterization; and (c)
constrained surface parameterization.

by using Modes 1-4 of the SLO. We also generate CVT-based segmentation results using the L2 and L∞ norm distance
metrics respectively; see Fig. 6(a, b). We can observe that regions with sharp features are not well segmented when
the L2 norm is used although each SLO eigenfunction can detect the curvature related features at various scales, while
the L∞ norm distance metric performs better to detect regions surrounded by curvature-related feature lines. Fig. 5(c)
shows the surface parameterization result of the Hook with all sharp features aligned to parametric lines. As shown
in Fig. 6(c), feature lines of the L-shape are extracted as the cluster boundaries and blue triangles along the extracted
feature lines (green lines) are selected as the guidance triangles to build the cross field. The resulting parametric lines
align well to the feature lines after the constrained surface parameterization process, see the result in Fig. 6(d).

Limitations. Although eigenfunctions of the SLO can well detect curvature related surface features, selecting
proper eigenmodes for our CVT-based surface segmentation is heuristic and it needs some user interactions. Since
our constrained surface parameterization algorithm requires aligning parametric lines with integer constraints along
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Fig. 4. Teddy model. (a) Modes 1-4 of the SLO; (b) CVT-based surface segmentation using the L2 norm distance metric; (c) CVT-based surface
segmentation using the L∞ norm distance metric; and (d) surface parameterization.

(a) (b) (c)

Fig. 5. Hook model. (a) CVT-based surface segmentation using the L2 norm distance metric; (b) CVT-based surface segmentation using the L∞
norm distance metric; and (c) surface parameterization.

the feature lines, large distortion may be introduced sometimes. For this situation, we need to improve the quality of
the resulting parameterization using smoothing and/or optimization methods.

5. Conclusions and Future Work

In this paper, we have developed a feature-aligned surface parameterization algorithm with the help of the SLO
eigenfunctions and Loop subdivision basis functions. To capture curvature related surface features, we first utilize the
Loop subdivision based IGA method to calculate eigenfunctions of the SLO over triangle surfaces. We then employ
the CVT-based surface segmentation in the eigenfunction space to extract feature lines which contain concave creases
and convex ridges. The L∞ norm is adopted here as the distance measurement. A constrained cross field method
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Fig. 6. L-shape model. (a) CVT-based surface segmentation using the L2 norm distance metric; (b) CVT-based surface segmentation using the L∞
norm distance metric; (c) feature lines and the corresponding guidance triangles; and (d) surface parameterization.

is developed for surface parameterization, where feature lines are preserved and aligned to parametric lines. In the
future, we plan to study the discretization scheme of the SLO over triangle meshes, and extend the presented method
to construct quad meshes, T-meshes and analysis-suitable T-splines for IGA applications.
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